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Experimental and theoretical studies of 
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Periodic dissolution patterns that result from the interaction of a soluble 
surface and an adjacent turbulent flow have been investigated experimentally 
and theoretically. They occur at  a Reynolds number based on a characteristic 
wavelength and friction velocity of about 2200. Experimental results for the 
stable geometry, propagation, mass-transfer distribution, average mass-transfer 
correlation and friction factor are presented. An interpretation based upon 
the repetitive transitional nature of the flow structure is advanced to explain 
aspects of the origin and behaviour of this type of roughness. 

1. Introduction 
In  convective transport the flow field and diffusive properties establish the 

distribution of the rate of heat or mass transfer from a surface. If the surface is 
soluble, an interaction between the flow and any surface irregularity can lead to 
the development of a rough surface with the surface shape responding to the 
local distribution of dissolution and this, in turn, creating new boundary con- 
ditions for the adjacent flow. The complexity of these ‘bed forms’ has been 
documented by Allen (1 971 a, b) ,  especially for their transient development from 
initial surface defects. The final, quasi-steady surface roughness configuration 
has been given the name mxllops in the geological and speleological literature. 
An apparently special form of scalloping produces ripple-like forms with sub- 
parallel crests normal to the direction of flow, which have commonly been 
given the name Jutes (Allen used the term ‘flute’ for certain transient forms). 
Both of these forms are illustrated in figures 1 (a) and (b)  (plate I), from limestone 
and ice caves. Descriptions, discussions and bibliographies on the natural 
occurrence of these and related flow-created roughness forms can be found in 
Allen (1971uzb), Goodchild & Ford (1971) and Curl (1966). 

If a surface irregularity is sufficiently pronounced, the adjacent flow will 
separate and reattach downstream from the disturbance. A mass-transfer-rate 
distribution will result with high rates in the vicinity of the point of reattachment 
and Iower rates in the region of separation and recirculation. With continued 
dissolution a concavity or trough tends to form and spread downstream. If 
flutes develop, an equilibrium pattern (figure 2) may result and be stable in the 
sense that the local mass-transfer-rate distributions remain consistent with the 
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FIGURE 2. Flute geometry and propagation. Dissolution-rate and propagation vectors are 
shown to scale. The lower profile shows location after dissolution a t  a propagation angle 
4 = 61". 

geometry. The surface then dissolves with no further change in shape. An equili- 
brium scalloped surface is probably only stable in a statistical sense. 

A remarkable property of fluted and scalloped surfaces is the apparent de- 
pendence of the length scale L on the ratio Ulv of the velocity to the kinematic 
viscosity. In  observing active limestone-water and ice-air flute systems, Curl 
(1966) noted that the Reynolds numbers based on the wavelength and main- 
stream velocity for the two cases were roughly 23000, despite an order-of- 
magnitude difference in kinematic viscosity. This was found consistent with 
simple dimensional considerations, leading to the prediction of a constant- 
period Reynolds number for flutes. 

Although the phenomenon of flutes bears some resemblance to other periodic 
phenomena, such as the formation of sediment ripples and wave generation by 
wind action, it has two distinguishing features. First, the solid material dissolves 
and is removed and is not redeposited. Second, the phenomenon produces a 
roughness form on which flow separation occurs a t  each crest. Theoretical 
studies of transport with flow over wavy surfaces (Benjamin 1959) and experi- 
mental studies of evolving wavy surfaces (Ashton & Kennedy 1972) and sediment 
transport processes (e.g. Kennedy 1964; Allen 1968) are not directlyrelevant here, 
although the first two would be relevant to certain aspects of the initiation of 
dissolution roughness. 

Although dissolution roughness involves mass transfer it is basically a hydro- 
dynamic phenomenon in which the flow boundary condition is evolutionary. 
It should be possible from a study of both the flow and the surface to deduce 
the hydrodynamic factors involved in the origin, scale determination and propa- 
gation of dissolution roughness. We shall present here geometric and dimensional 
relationships pertaining to the properties primarily of equilibrium flutes, and 
results of laboratory experiments in which these properties, including mass and 
momentum transfer, have been measured. Finally, we present proposals based 
on observations for the hydrodynamic origin of the characteristic dimensional 
scaling of dissolution roughness with solvent velocity. 



Studies of dissolution roughness 737 

2. Geometric relations 
The geometric and propagation properties of dissolution roughness reveal 

certain aspects of the adjacent flow or, more precisely, the effect of the adjacent 
flow on the local rate of dissolution. Consider a co-ordinate system fixed with 
respect to the solid soluble surface with the co-ordinate x parallel to the mean 
surface and y normal to and into this mean surface (figure 2, origin 0). The 
slope angle 8 at a point (x ,  y) on the surface and y are both functions of x and the 
time t. The dissolution-rate velocity v, normal to the surface, is in general also a 
function of x and t. If the surface were multi-valued (in y), v would be also, but 
this situation will not be considered further. The general surface-shape evolution 

(2.1) 
relation is given by ay/at = v sec 8. 

The general transient evolution of a soluble rough surface is a difficult problem 
but, because v is at  present an unknown function of a general turbulent flow, 
primarily the equilibrium form of roughness will interest us here. Such a pat- 
tern will propagate in the x direction at  some velocity u, and the y direction 
a t  uy, both of which may be functions of time. The resultant propagationvelocity 
U = (ux.uy) makes an angle 4 with the x axis. The general condition for the 
preservation of the equilibrium form is 

which gives, with (2.1), uy - uZfr = v sec 8. (2.3) 

(2.4) 

Normalizing with respect to the average dissolution rate uy, and after some re- 
arranging, we obtain v/u, = sin (4 - @/sin 4. 
If the surface solute concentrationis constant, this is also the ratio h/z of thelocal 
to the average mass-transfer coefficient. Although 8 can be obtained from a 
flute profile, it is not sufficient to determine q5, and hence the dissolution-rate 
pattern over the surface. The propagation angle can only be determined experi- 
mentally. 

The idealized flute form is a periodic pattern with crests and troughs. A co- 
ordinate system may be defined with respect to the crests as shown in figure 2 ,  
when the surface shape is given by Y ( X ) .  For the equilibrium pattern this trans- 
formation is trivial and does not alter the relation for the dissolution-rate 
pattern given by (2.4), which depends only upon surface and propagation angles. 

The crests of natural flutes are observed to be not absolutely sharp, which 
may be because the soluble material is not absolutely homogeneous, or because 
of the nature of the process itself. Because natural crests are observed to be 
nearly sharp, and because the crest is a useful origin for measuring flute geo- 
metry, it  is worthwhile to investigate crest propagation itself. It may be shown 
from (2.1) that a profile point where the slope is 8 appears to propagate at the 

sec3 8 
r a[ln (v sec e)]/ax ’ 

angle 4’ given by 
tan 4’ = tan 0 - 
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where r is the radius of curvature of the surface at  that point. At the top of a 
crest (or a t  the bottom of a trough), where 8 is zero, this becomes 

The radius of curvature of an equilibrium crest is therefore inversely proportional 
to the local rate of change of the logarithm of the dissolution rate. 

Compared with the flute period or other dimensions, r a t  a crest is actually 
very small. Equation (2.5) becomes indeterminate in the limit r 3 0 and a dif- 
ferent calculation is needed to  determine the propagation angle from crest dis- 
solution processes. If (2.4) is applied to any two points in an equilibrium pattern, 
uy may be eliminated to give 

v1 sin 8, - v2 sin 1 9 ~  tan# = 
v1 cos 8, - v 2  cos 8, * 

(2.7) 

The points, numbered 1 and 2, may then be chosen to be the lee and streamward 
sides of an abrupt crest (a 'corner' with r = 0) ,  giving the propagation direc- 
tion in terms of local conditions. This would also apply t.0 non-equilibrium crests. 
For all practical purposes (2.7) is applicable to the real situation. 

3. 'Universal' laws of dissolution roughness 
A simple dimensional analysis to show that the flute period, or some charac- 

teristic dimensions of scallops, should scale such that a Reynolds number based 
on that dimension remains constant has been proposed (Curl 1966). The mean 
channel velocity was used. Blumberg (1970) adopted the maximum velocity 
U, in the vicinity of the wall while Goodchild & Ford (1971) used the velocity 
3 cm above the surface. 

It has since become apparent that the velocity conditions near the wall de- 
pend upon the channel size, given either the mean or maximum channel velocity. 
The conclusion is that a 'law of the wall' turbulent-flow analysis is a better 
basis for a dimensional analysis of flute or scallop geometric properties. If it is 
assumed that a rough fluted or scalloped surface is given apriori, and is described 
by a set 9 of either fixed geometric properties (dimensions) for flutes or statis- 
tical geometric properties for scallops, the average-velocity profile u of  the fluid 
near the wall depends upon the average wall shear stress 7, a characteristic 
dimension L of the pattern, the distance y from the surface, the normalized 
roughness geometry 2 / L ,  the fluid density p and the kinematic viscosity v. 
Experiments have shown that this may be represented approximately by the 
well-known universal velocity distribution law 

ulv" = 2-5 In y / L  i B,, (3 .1 )  

where v* is the friction velocity (TIP)$. The roughness function BL must depend 
on the geometry $P/L and the roughness friction Reynolds number Re" = Lv*/v. 
Schlichting (1937) explored a wide variety of patterned roughness forms and 
found this relation to apply. Because flutes or scallops are no more exotic than 
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the roughness elements used by Schlichting, we shall presume that (3.1) applies 
also in the present situation. 

The above discussion avoids the central issue that the dissolution of a soluble 
wall creates the roughness form which in turn determines the near-wall turbu- 
lence structure. To examine this question imagine a turbulent flow over a soluble 
surface where the average wall shear stress is fixed. Some dissolution pattern will 
evolve and, when equilibrium is reached, it may be presumed that any charac- 
teristic dimension L of the pattern will depend on the shear stress, fluid proper- 
ties and possibly the molecular diffusivity D of the solute. From dimensional 
arguments one obtains 

Given the Schmidt number Sc = v/D, the equilibrium value of Re* must be a 
constant. It also follows, by extending (3.2) to any length dimension, that all 
flute (or scallop) patterns should have a universal geometry (i.e. 9 / L  is a universal 
set), possibly dependent on Sc. Returning now to  (3.11, we see that BL must also 
be a constant for equilibrium flutes (scallops) and is equal to the ratio u(L)/v*. 

The average surface shear stress P W * ~ ,  expressed in the form +pu2(L) f,, gives 
a wall friction factor fL = 2Bi2. It is convenient to use u(L) = v*BL as a charac- 
teristic near-wall velocity, rather than the mean or maximum channel velocity, 
or even the friction velocity v*, because it has a simple physical interpretation. 
If the velocity profile were moderately flat we would expect u(L) Llv = Re, to 
be close to the previously estimated value of 23000. The evaluation of BL and 
Re* from measurements of velocity profiles over equilibrium flutes and scallops 
will be reported and discussed later. 

Integration of (3.1) from the wall to the centre of a circular channel will relate 
the mean channel velocity U to the equilibrium flute size. The result, 

(3.3) 

Re* = Lv*/v = f (.ID). (3.2) 

Z L / v  = Re*{2<5[ln(R/L) - $1 +BL], 

is useful for estimating paleohydrologic conditions in natural fluted conduits 
(Curl 1974). The conduit Fanning friction factorf = 2r/pU2 = ~ ( V * / U ) ~ ,  in terms 
of the Reynolds number based on the conduit diameter and mean velocity, 
follows from (3.3) : 

- _  
f-4 = 1.77 In (Redfs) - (4.49 + 1-77 ln Re* - 0*707B,). (3.4) 

This is identical in form to Prandtl’s universal resistance law for smooth pipes 
a t  large Reynolds numbers. That is, the conduit with dissolution roughness that 
is always adapted to the flow conditions acts as a pseudo-smooth rough pipe. 
This result could have been perceived sooner by noting that there does not actu- 
ally exist any a priori roughness scale in the case of dissolution roughness and 
therefore (following Prandtl’s smooth-pipe analysis) L in (3.1) could have been 
chosen from the first as proportional to v/v*. 

From (3.2) we can also conclude that 

# =f(Sc), =f(&w, (3.51, (3.6) 

where ? = X / L  and 2 = X / L  are dimensionless flute co-ordinates. 
47-2 
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A dimensional analysis for the local mass-transfer coefficient, based on the 
friction velocity v*, yields 

hLID = f(Re*,T,Xc). (3.7) 

The profile of the local mass-transfer rate must be similar at fixed Schmidt 
number. The degree to  which it varies with the Schmidt number must be deter- 
mined experimentally (as must also the Schmidt-number dependencies in (3.2), 
(3.5) and (3.6)). If, a t  equilibrium, Re* is essentially independent of Sc, as will 
be argued later, and is therefore a constant, it need not be included in (3.7). 

Averaging (3.7) over a single flute period shows that the average Nusselt 
number Nu* depends only on the Schmidt number. It would be expected to be 
approximately proportional to X d ,  by analogy with other boundary-layer- 
dominated transfer processes. 

4. Apparatus and experimental measurements 
The aims of the experiments were to generate stable flutes, to  measure their 

geometric and propagation properties, to determine their transport properties 
and, if possible, to  ascertain the hydrodynamic mechanisms responsible for their 
various characteristics. The equipment was designed to  provide a sufficiently 
rapid flow at  controlled velocities, temperatures and undersaturation over a 
soluble surface. Plaster of Paris (gypsum), suggested by Rudnicki (1960) and 
used also by Allen (1971 a )  and Goodchild & Ford (1971)) was chosen as the sub- 
strate as it has a reasonable but low solubility and, more important, is easily 
cast t o  a suitable size and shape. A recirculating flow in a 6 x 6in. water tunnel 
was driven by a propeller through a honeycomb flow straightener and over the 
plaster block. The block, 30 in. long, 6 in. wide and 5 in. deep, was cast as free of 
air bubbles as possible and its sides and ends were protected from dissolution with 
shellac. The block was supported on a plate which could be raised as dissolution 
proceeded. 

The temperature was controlled automatically to  within 1 "C and the con- 
centration of calcium sulphate in solution was kept constant (at about I0 yo of 
saturation) by a metered flow of fresh tap water accompanied by an equal over- 
flow from the system. The pH of the system was held a t  6.0 by continuous 
addition of acetic acid in order to prevent formation of CaCO,. Further details 
of the design of the apparatus and its operation may be found in Blumberg (1970). 

Both scalloped and fluted surfaces were generated. Because the latter did not 
appear spontaneously in the dissolution distance available, the original flat 
surfaces were inscribed with transverse grooves a t  chosen intervals, from which 
flute profiles developed with relatively little dissolution. This procedure effec- 
tively prevented a direct determination of the stable, equilibrium Reynolds 
number for flutes but did allow a study of the behaviour of near-equilibrium and 
non-equilibrium spacings. 

From timed measurements of the trajectories of the flute crests with respect 
to  the block, values of q5 and uy could be determined. Subsequent careful mea- 
surements of the surface profiles with an indicator gauge gave local values of the 
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surface slope, permitting the complete dissolution-rate profile over a flute 
period to be determined [using (2.4)] as well as the average dissolution rate, from 
which the Nusselt number Nu could be estimated. Velocity profiles were measured 
with a liquid-filled Pitot tube and from these the apparent mean surface shear 
stress could be estimated using the logarithmic velocity law [equation (3. l)]. 
The channel was too short for the full development of the velocity profile, which 
was a difficulty in using velocity profiles for the accurate determination of Re*. 

Qualitative flow visualization experiments were carried out using either 
fine polyvinyl chloride particles, which indicated the average overall flow pattern, 
or potassium permanganate crystals, which, collecting and dissolving in the 
flute troughs, coloured the recirculating flow in the lee of the crest and indicated 
the structure of the shear layer between the separated main flow and the recircu- 
lating flow. The conditions of all experiments are reported in table 1. 

5. Flute profile stability 
Although equilibrium flutes were not generated from a flat surface, an esti- 

mate was available for the approximate stable-flute Reynolds number (Curl 
1966). The initial experiments were conducted to determine what happens with 
large departures from what was expected to be the approximate relation between 
the flute wavelength and the velocity near the wall. Because v* could not itself 
be chosen in advance (and also because previous analyses of flute stability had 
not yet brought in the concept of a wall friction Reynolds number as the ‘uni- 
versal ’ constant) the maximum mainstream velocity was chosen, in combination 
with the induced flute wavelength, to give a maximum-velocity Reynolds 
number Re, near the previously suggested value of 22 500. Two blocks were in- 
scribed with transverse grooves at  2 in. intervals, from which flutes developed 
on dissolution. One block was used in an experiment (experiment 2) in which the 
2in. flutes were expected to be stable (U, = 42*9cm/s, Re, = 23300)) and the 
other block a t  a higher velocity (U, = 80.3 cmls, Re, = 25 500) at which the 1 in. 
flutes were expected to be stable (experiment 3).  The results are shown in the 
photographs in figures 3 and 4 (plate 2). 

In  experiment 2 (figure 3) the 2in. flute region was ‘stable’ for a vertical 
dissolution distance of over 2 in. On the other hand the 1 in. (at Re, = 11 500) 
flutes became obscure as dissolution proceeded. The effect near the end of the 
2in. flute region was, in fact, to suppress the height of alternate flute crests. 
The 1 in. flute instability was such as to increase the average wavelength of the 
pattern in this region. The irregular patterns developing near the edges of the 
blocks were due to side-wall boundary layers and are not related to  stability or 
instability of the flute pattern itself. 

I n  experiment 3 (figure 4, plate 2) a very different outcome was observed. 
Whereas the 1 in. flutes appeared moderately stable, small disturbances in the 
surface appeared a t  various places, but especially on the streamward (stoss) 
slopes, within the group of induced 2 in. flutes. The apparent Re, in this region 
was 51000. This type of instability is quite different from that observed in 
experiment 2. Its effect is to  decrease the average wavelength of the pattern 
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through initially small features increasing in size and number and ' consuming ' 
the original pattern. We can conclude that, at least a t  the extreme 'near wall' 
values of Re, of 11 650 and 51 000, flute patterns disintegrate rapidly in such a 
way as to tend towards an Re, between these limits. How close the chosen 'stable ' 
values of Re, may be to the 'true ' value is not disclosed by these two experiments. 

I n  experiments 6 and 7 (not shown), 0.75in. induced flutes were produced 
at 27.6 "C and 44.5 "C respectively, with the velocities (see table 1) adjusted to 
give essentially the same Re, (25 600 and 26 000 respectively), but Schmidt 
numbers differing by a factor of two. I n  both cases the patterns were stable 
for dissolution distances exceeding two wavelengths. The Schmidt number does 
not have a dominant influence on flute-pattern stability. 

Two experiments were made starting with a flat surface without inducing 
flutes (experiment 1) and with a randomly roughened surface (experiment 4)) 
respectively. Both evolved into scalloped surfaces as shown in figure 5 (plate 3). 
By running the experiments a t  15.8 and 32.5 "C and velocities of U, = 45.0 and 
115.6 cm/s, respectively, values of U,lu differing by a factor of nearly four were 
established. The dissolution process responded as shown in the figure. The 
maximum longitudinal length of each 'scallop' concavity was measured and a 
mean size, z,, was calculated as the sum of cubes divided by the sum of squares. 
This mean value suppresses the importance of small concavities, which are 
questionable 'scallops ', and brings the mean scallop dimensions into closer 
agreement with the friction measurements for flutes ($6).  The observed values 
were z,, = 6.0 cm for experiment 1 and 1.72 cm for experiment 4. Converting 
to Reynolds numbers, the values of Re, using these lengths were then 24 300 and 
26 200, respectively. This is striking evidence of the Reynolds number domination 
of the length scale of a scalloped surface and the relative insensitivity to the 
Schmidt number. 

The velocity U, in terms of which the qualitative discussion of this section 
has been conducted is not the v+ or u(L) that we expect to be most important in 
determining flute or scallop dimensions. However, it is appropriate for con- 
sidering the qualitative observations of stability and instability, and the develop- 
ment of average scalloping dimensions. 

6. Momentum transfer 
Velocity profiles were measured over the sections of nominally stable flutes 

and over one scalloped surface. Because the channel was short the two boundary 
layers from the upper (smooth) and lower (fluted) surfaces were always develop- 
ing and interacting. Nevertheless estimates of the friction velocity v* were 
obtained by performing a regression analysis of the observations using (3.1). 
The results are given in table 1 as Re*, BL and fL, and the first two are plotted 
in figure 6. 90 "/o confidence intervals for the measured v* were used to construct 
the intervals shown in the figure. For comparison, a 90 yo confidence region is 
shown for experiment 7.2. Because all of the velocity profile data were obtained 
over nominally stable dissolution patterns, and because the confidence intervals 
exhibit a strong correlation between Re" and B, estimates, it is not possible to 
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Re* 

FIGURE G .  The dependence of the measured roughness function BL on the friction-velocity 
Reynolds number Re*. 90 yo confidence intervals and lines (dashed) of constant 

ReL = BLRe* 

areshown. Experimentnumbers: 0,  2.1; 0 ,  2.2; 0, 3.1; 0 ,  3.2; n,4.2; W,4.3; A,6.1; 
v, 6.2; v, 6.3; A ,  6.4; 0, 7.1. 

discern a phenomenological relation between them. For this purpose, experi- 
ments with fully developed channel flow would be needed. 

Scallops are represented by the data from experiments 4.2 and 4.3, which are 
seen to fall among the values obtained from induced flutes (when x32 is used as 
the mean scallop dimension). To the extent, then, that  E3, for scallops is 
equivalent to the wavelength of equilibrium flutes, the equilibrium values are 
Re* * 2200, B, 9.4 and Re, = 21 000. The flute friction factor is then fL A 0.023. 
A much longer channel would be needed to improve on these values. 

Schlichting (1  937) made velocity profile measurements over ‘long-angle 
roughness’ bearing some resemblance t o  a fluted surface. For a wavelength/ 
height ratio of 6.7 (compared with 8.0 for flutes) the values of BL calculated from 
the results reported by Schlichting were constant a t  7.1, but this was a t  values of 
Re” from 7000 to 17 000. Schlichting’s somewhat equivalent experiments were 
in the ‘fully rough’ regime and did not cover the transition-turbulence region 
where it appears that naturally evolving fluted and scalloped surfaces occur. 
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The value of B, = 7.1 is not an unreasonablelower limit in figure 6 for large 
values of Re*, although this was not determined experimentally. The studies of 
Motzfeld (1937) on wavy walls were also made a t  large values of Re*, exceeding 
about 10 000. 

With the above constants, equation (3.4) for the pseudo-smooth rough pipe 
becomes 

The final constant would be -0.60 for the smooth pipe (after Prandtl; see 
Schlichting 1968). 

- _  
j-4 = 1 -77 In (Re&) - 1 I -44. (6.1) 

7. Flute geometry and propagation 
Induced flutes were observed to adopt their final geometry, propagation direc- 

tion and velocity within a short time after the initiation of dissolution. Figure 
7 (plate 4) shows a typical flute profile from experiment 2. A number of measure- 
ments of flute profiles from a given experiment, and of flute profiles from different 
experiments, including flutes under unstable conditions (such as 2 in. flutes in 
experiment 3), suggested that neither the Reynolds number (stable or unstable) 
nor Schmidt number has a great effect on the flute profile. The explanation for 
this must lie in the details of the complex separating-reattaching flow following 
a crest. To obtain a representation of a stable profile, data from measurements 
of three stable flutes from each of experiments 2 , 3  and 6 were normalized, pooled 
and fitted by a Fourier sine series using sufficient terms that the variance reduc- 
tion ratio was not significant at  the 1 yo level. The result was 

f = 0.1 12 sin n 8  + 0.028 sin 2 n 8  - 0.004 sin 3772 (7.1) 
and is shown in figures 2 and 8. For comparison there is also shown in figure 8 
a composite profile from experiment 3, for 'unstable' 2in. profiles. The differ- 
ence is no more than that found among stable profiles from a single experiment. 

Table 1 shows the measured values of the propagation angle, including that 
for unstable 2 in. flutes. Stable profiles propagate with a downstream component, 
characteristically at  an angle of about 4 = 61". The unstable 2in. flutes of 
experiment 3 propagated instead at an angle 4 = 75", prior to the development 
of the new, smaller scale, features that would lead to a new overall scale. The 
unstable 1 in. flutes from experiment 2 broke up before g5 could be measured. From 
the profile, equation (7.1), and the direction of propagation for stable flutes, the 
complete mass-transfer profile may be obtained and is shown in figure 8, along 
with the result of applying the same analysis to unstable 2 in. flutes from experi- 
ment 3. While the geometric profiles are essentially the same, the distribution of 
mass transfer has been considerably altered. 

Equation (2.4) can be written as 

h/E = cos 0 - cot 4 sin 0, ( 7 4  
where 8 is a nearly fixed function of 8, if the shape of an induced flute does not 
respond to velocity changes. Non-equilibrium (unstable) flow conditions, which 
change primarily g5, appear to change the admixture of the relatively fixed 
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FIGURE 8. (a)  Flute profile and ( b )  dissolution-rate profile. - , 'stable' profiles, 
propagating at  $ = 61"; ---- , 'unstable' profile, propagating at  Q = 75" (from 
experiment 3).  

functions cos 8 and sin 8 in the dissolution pattern. This is an interesting but 
unexplained flute property. 

The crest in figure 8 (or figure 2) is shown as a sharp cusp. The radius of curva- 
ture of the crest was close to the granularity of the plaster, but it appeared to be 
of the order of 0.5% or less of the flute period. With q5 = 61", equation (2.6) 
yields for the non-dimensionalized rate of change of the dissolution rate at  the 
crest 

which shows the abrupt drop in dissolution rate a t  the flow separation point. 

h 

alnv/aX + - 110, (7.3) 

8. Mass-transport properties 
The longitudinal variation of the average dissolution rate for both fluted and 

scalloped blocks was small and was not investigated. The average transfer 
coefficient for dissolution of both flutes and scallops, combined with the equili- 
brium flute or scallop dimension and a diffusivity ( D  = 0 . 9 0 ~  10-5 cm2/s a t  
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25 "C), gave the mass-transfer Nusselt numbers shown in table 1. A least-squares 
fit of Nu us. S c  agreed with the conventional exponent of 8. An adequate correla- 
tion for the equilibrium Nusselt number, from the results of the dissolution-rate 
experiments, is 

for both flutes and scallops. 

classical Colburn j factor for mass transfer becomes 

Nu* = 112xc+ (8.1) 

When applied to flow in an equilibrium scalloped or fluted conduit, the 

= 0.051 (i)". . E  v* Nu* Sc-4 
U ii Re* JJm = zsc8 = 

This is the same as the wall-region heat-transfer relationship for rough pipes 
that has been derived by Hughmark (1972). His constant, based upon mass- 
transfer data from smooth pipes, is 0.0816. The difference appears to be signi- 
ficant, but otherwise mass transfer on dissolution roughness behaves like that 
for other forms of roughriess. 

An estimate of the mass-transfer boundary-layer thickness 8, = 01% yields 
SmlL = Nu*-l = 0.0089 23c-s. For Xc > 6, S, is less than 0.5 yo of L. This gives 
further reason to believe that the Schmidt number will have little effect upon 
the stability Reynolds number Re", flute profiles or propagation angle q5 in 
aqueous solvents. Some effect may be expected in ice-air dissolution roughness. 

9. Observations on flute hydrodynamics 
The model shown in figure 9 illustrates the major observations of the hydro- 

dynamics of stable dissolution profiles. Region 1 marks the inner edge of the 
main turbulent flow; the streamlines in this region are almost unaffected by the 
periodicity of the fluted surface. The position of flow separation is fixed by the 
sharpness of the flute crest. Coming into contact with the relatively slowly moving 
fluid in the lee cavity, the separated flow forms a 'laminar ' free shear layer in 
region 2, which subsequently undergoes a transition to turbulence in region 3. 
The turbulence is responsible for the entrainment of fluid from the cavity and 
the consequent turning in of the flow towards the surface. Reattachment occurs 
in region 4, where part of the fluid moves downstream and part is returned into 
the cavity. The returned flow and free shear layer combined to provide a general 
recirculating motion in region 5 .  The flow is highly unsteady in the neighbourhood 
of reattachment (Curl 1966). Owing to a strong adverse pressure gradient, the 
returning boundary-layer flow formed along the lee slope separates before 
reaching the crest. This separation manifests itself in a small change in profile 
slope a t  the junction of regions 6 and 8. Region 8 consists of small eddies held 
between the shear layer and the separated recirculating flow. The boundary 
layer along the stoss slope separates from the downstream crest and, ideally, an 
identical flow pattern should be produced over the next flute. 

The mass-transfer distribution on stable flutes (figure 8) exhibits a maximum 
at approximately 8 = 0.62. This may be considered as the average point of 
flow reattachment. As boundary layers develop from the reattachment point, 
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FIGURE 9. -Hydrodynamic regions for flow over one flute period. (1) Main turbulent flow. 
( 2 )  Laminar free shear layer. (3) Transition to turbulence and entrainment. (4) Reattach- 
ment. ( 5 )  Irregular recirculating flow. (6) Lee-slope boundary layer. (7)  Streamward-slope 
boundary layer. (8) Lee-slope boundary-layer separation with small eddies. 

the mass-transfer coefficient shows a continuous decrease in both directions. 
This maximum in the mass-transfer rate along the stoss slope is responsible for 
the downstream propagation angle of $ = 61". 

I n  presenting the experimental mass-transfer distributions we have omitted 
the small effect of the lee-slope boundary-layer separation point. It is a feature 
of the profile, however, that is readily visible, occupying an interval of the nor- 
malized co-ordinate up to about 3 = 0.05. 

The essential observed hydrodynamic feature of flow over dissolution profiles, 
stable or unstable, is the separation-transition-reattachment process. The dis- 
tance between the upstream crest, i.e. separation, and the average point of flow 
reattachment determines that part of the surface which is exposed to maximum 
mass-transfer rates. If the Reynolds number is to influence the stable length 
scale, then the distance from separation to reattachment must be Reynolds- 
number dependent. The attachment to adjacent surfaces does not exhibit this 
dependence in completely turbulent separations. Turbulent jet experiments 
described by Sawyer (1962) and Newman (1961) showed that the position of 
reattachment was fixed by the geometry of the system alone. On the other hand, 
in studying transitional separations on airfoil sections, Gault (1955) showed that 
the distance from laminar separation to transition is dependent on the ratio U/v 
and that, therefore, the reattachment of the separated flow is Reynolds-number 
dependent. In  addition Chapman, Kuehn & Larson (1958) have observed that, 
in separating-reattaching flows, only those involving transition of the separated 
laminar flow display a Reynolds-number dependence. The value of the Reynolds 
number based on the length of the separated region is approximately 30000 in 
both of these studies. This is encouragingly close to Re, = 21 000. 

The flow visualization experiments showed a relatively smooth, laminar 
separation and a downstream transition to turbulence in the shear layer. Dye 
experiments showed little or no turbulent mixing between the separated and 
recirculating flows immediately after separation (region 2), but intense mixing 
in the region of entrainment following transition. Residence times in the eddy 
region were a t  most a few seconds. Reasoning from stability observations, flow 
visualization experiments and the literature in related areas, we are led to the 
conclusion that shear-layer transition is a fundamental aspect of fully established 
flute hydrodynamics. 
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Stability 
For the case in which the imposed Reynolds number is well below that required 
for flute stability, the point of shear-layer transition should move further out onto 
the stoss slopes, past 8 = 0.62. If this occurred on one profile, the boundary- 
layer thickness a t  the point of the next separation would be reduced, resulting in 
a more rapid development of an inflexion-point velocity profile in the shear layer, 
a more rapid transition and, consequently, a more rapid reattachment on the 
following profile. The higher residual turbulence in the shear layer would also 
tend to draw the position of reattachment closer to the subsequent crest. Of 
course, on a strictly periodic pattern, the flow must be strictly periodic (on the 
average) but, with any irregularities present, the flow might be expected to 
develop erratic patterns, sometimes reattaching ‘short ’ and sometimes ‘long ’. 
This would destroy the original pattern (as observed) and lead to one of larger 
scale which would adapt better to the separating-transition-reattaching flow. 

For the case in which the Reynolds number is well above that required for 
stability, a totally different type of instability was observed. This was charac- 
terized by the development of local ‘pot holes’ on the stoss slopes of the profiles, 
which then spread in the transverse direction. The rapid amplification of small 
disturbances on these portions of the profiles appears to be made possible by the 
flow structure which develops when the length scale is too long (or Ulv is too 
large). On a normalized basis, the transition of the shear layer to turbulence 
occurs closer to each crest. More fluid is entrained prior to reattachment, so that 
the effects of flow stagnation are felt over a larger portion of the stoss slope. 
This results directly in a flattening of the mass-transfer distribution along the 
streamward slope (figure 8)) as compared with the decreasing coefficients 
observed in the sta.ble case. When there is a flat mass-transfer distribution along 
the stoss slope a small disturbance leading to separation will produce a higher 
dissolution rate on the downstream side of the disturbance, thus amplifying it. 
I n  the stable case, on the other hand, the overall strongly decreasing transfer 
rate and the favourable pressure gradient just past reattachment probably com- 
bine to prevent renewed separation, or augmented dissolution if a small local 
separation does occur. 

Scallop patterns, which we believe to have essentially the properties and 
origins described above for flutes, are much more common in nature. We do not 
know, however, whether or not there are any special conditions conducive to 
the origin of the two-dimensional flute forms. Constant temperature and flow 
velocity have been suggested as necessary conditions (Curl 1966) but the present 
work shows that these are not sufficient. It was thought that perhaps the solid 
side-wall boundaries prevented flute formation, but an experiment on a narrower 
block with open-ended induced flutes ended with the block scalloped. This ques- 
tion remains unanswered. 
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10. Comparison with other observations 
The experiments of Goodchild & Ford (1971) suggest a value of 11 500 for 

the equilibrium Reynolds number, based on a fluid velocity 3cm from the 
surface and a number-mean scallop size. They also report observations of dif- 
ferent average scallop sizes on adjacent limestone layers, in caves, which must 
have experienced the same flow velocity. The differences between their experi- 
ments and our results and this observation appear both to be related to imper- 
fections (air bubbles in plaster or inclusions in limestone) that cause the initiation 
of small dissolution features that subsequently grow. The result is a smaller aver- 
age scallop dimension. 

The 'defect' origin of some scalloping patterns was a major theme of Allen 
(1971 b). Allen found, however, that given sufficient dissolution distance on plaster 
of Paris, the mean scallop dimension tended to a limit. This gave Re, = 17 000, 
based on the mean scallop length, but Re, = 25 000, based on EZ2,  which agrees 
closely with this work. 

On the basis of the data of Carey (1966), who observed fluting on the underside 
of river ice, we obtain, assuming that (3.1) applies, Re, ranging from 40000 to 
80 000. Ashton & Kennedy (1  972) investigated both natural and artificial 
ripples formed during the freezing or melting of water ice. They found that, 
prior to the onset of flow separation a t  crests, the ripple period and mean flow 
velocity gave Re, = 47 000. After separation occurred the period tended to 
decrease. Apparently, on ice, an initially dominant period can result from selec- 
tive amplification of particular small amplitude surface-irregularity wavelengths. 
This does not appear to be an important mode in the generation of dissolution 
roughness on plaster of Paris. A possible explanation is that the heat conduction 
mechanism in freezing or melting tends to suppress small-scale irregularities 
resulting from local separation or reattachment. 

None of the above workers reported velocity profiles from which Re* could 
be determined. 

An ' anomalous 'wavy roughness in the Ecker Valley pipeline caused, ostensibly, 
by deposition of colloidal aluminium hydroxide, is discussed by Wiederhold 
(1949) and Seiferth & Kruger (1950). Applying (3.3) to their data, one finds 
116 < Re* < 662,  much smaller than in our system. It is possible that this pheno- 
menon is related to separation-reattachment on the scale of the small lee crest 
feature that was observed for 0 < 3 < 0.05. 

The results in the above instances may also have involved processes other than 
just dissolution of a homogeneous solid. It also appears probable that there would 
be different regimes of interaction of flows and soluble surfaces, as there are for 
sand ripples and dunes. While the specific factors responsible for the differences 
described above are not entirely known, our results are supported by their inter- 
nal consistencies over a wide range of conditions. More carefully controlled 
development of scallops (or possibly flutes) in a longer flume would be of value in 
identifying Re* more precisely and possibly answering questions about the 
natural occurrence of flutes. 
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( b )  
FIGURE 1.  (a) Naturally occurring scallops and flutes on limestone. Pollnagullum Cave, 
Iroland. Reproduced with permission of the University of Bristol Speleological Society. 
Photography by D. M. M. Thomuon. ( b )  Naturally occurring scallops in ice. Paradise 
Ice Caves, Washington. Photo by G .  H. Anderson, Jr. 
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IJiuutw: 3. Experiment 2 with ‘stable’ 2 in. flutes aftrr 0.8L dissolution. Tlw 1 in.  pattcrri 
I I W  hccri destroyed. Side-wall effects have become proriouriced but the 2 in. flutes rctain 
tlicir c1iaractc.r in the centro of the channel. (The longitudinal stripes in figures 3 and 4 ar(L 
ilue to ripplw on tho water surfarr through wliich the photograph WTW taken with t l i v  
fimv stoppd.) 

FWJRE 4. Experiment 3 with ‘stable’ 1 in. flutea after 1-4L dissolution. The 2 in. pattern 
is being destroyed by tho generation of new small-scale features. 
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( b )  

FIGURE 5 .  Experiments 1 and 4 after scallop patterns have developed. (a) Experiment 1 
at 45 crn/s and 15.7 "C. ( b )  Experiment 4 a t  116 cm/s and 32.5 "C. 
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